Circulation of Brucellaceae, Anaplasma and Ehrlichia spp. in borderline of Iran, Azerbaijan, and Armenia

Rahimeh Abdoli¹,², Hasan Bakhshi¹,², Sedigheh Kheirandish¹, Faezeh Faghihi³, Asadollah Hosseini-Chegeni⁴, Mohammad Ali Oshaghi¹, Zakkyeh Telmadarraiy¹,², Mohammad Mehdi Sedaghat¹

¹Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
²Department of Oral and Maxillofacial Pathology, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
³Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
⁴Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
⁵Rahyan Novin Danesh (RND) Private University, Sari, Mazandaran, Iran

ABSTRACT

Objective: To estimate the infection of ticks to Anaplasma, Ehrlichia, Babesia, Theileria, and Brucellaceae using molecular methods in borderline of Iran, Azerbaijan, and Armenia.

Methods: Totally, 2,022 ticks were collected from different livestock. Then, species were diagnosed under stereomicroscope according to valid morphological keys. Tick DNA was extracted followed by PCR to detect Anaplasma, Ehrlichia, Theileria, Babesia and Brucellaceae infection in ticks.

Results: A total of 498 males [24.62% (95% CI 22.76%-26.57%)], 741 females [36.64% (95% CI 34.54%-38.79%)], 782 nymphs [38.67% (95% CI 36.55%-40.84%)] and 1 larva [0.04% (95% CI 0.00%-0.28%)] were identified. Among identified samples, we found four genera including Hyalomma, Rhipicephalus, Haemaphysalis, and Dermacentor. Molecular assay revealed that the prevalence of ticks to Anaplasma or Ehrlichia, and Brucellaceae was 22.02% (95% CI 16.01%-29.06%) and 15.03% (95% CI 9.43%-22.26%), respectively. Phylogenetic analysis showed that the identified Anaplasma sp. had the most similarity with Anaplasma centrale, Anaplasma platys, Anaplasma camelii, and Anaplasma phagocytophilum, submitted in GenBank. Furthermore, the detected Ehrlichia sp. and Brucellaceae bacterium had the most similarity with Ehrlichia ruminantium and Mycoplasma peli, respectively. However, no sign of the presence of Theileria and Babesia spp. was seen in the studied samples.

Conclusions: Anaplasmosis, ehrlichiosis and brucellosis should be considered as important health threats in northwestern Iran and consistent monitoring on infection of ticks and livestock should be performed regularly.

KEYWORDS: Tick; Anaplasma; Ehrlichia; Brucellaceae; PCR

I. Introduction

Ticks are one of the most important external blood-sucking parasites of vertebrates that cause the transmission of many pathogens including arboviruses, parasites and bacteria while they suck blood. The most important diseases transmitted by ticks are spotted fever, Rocky Mountains fever, Siberia tick typhus, tularemia, Lyme disease, tick-borne relapsing fever, Crimean-Congo hemorrhagic fever, babesiosis, anaplasmosis and brucellosis\(^1,2\). Ticks can suck blood on mammals, birds, reptiles, and amphibians, while most of them have a different mammalian host at each stage of their lives. These arthropods become infected from an infected vertebrate host and after a while, they are able to transmit pathogens to a new host by blood-sucking activity at another stage of life and the disease cycle remains stable in the nature\(^3\).

Many diseases are transmitted through the bite of ticks: The Brucellaceae family comprises pathogens and soil bacteria with Brucella as an important genus. Brucellosis is caused by different Brucella species which are Gram-negative rod-shaped facultative intracellular bacteria that usually persist for life\(^4\). Zoonosis...
species include *Brucella (B.) abortus*, *B. canis*, *B. melitensis*, and *B. suis*. Unpasteurized milk, undercooked infected meat, close contact with animal secretions are the main routes of transmission to human; on the other hand, ticks usually transmit the disease to sheep, cattle, goats and some other animals[5]. All provinces of Iran are endemic for brucellosis, especially Hamadan, Markazi, Lorestan, Kermanshah, West Azerbaijan, South Khorasan and East Azerbaijan, imposing high economic loss due to livestock infertility and abortions, veterinary expenses and has serious threat to human health[4]. Anaplasmosis is another zoonotic disease caused by obligate intra-cellular bacteria (Family Anaplasmataceae: Order Rickettsiales), which is usually transmitted through a number of hematophagous species of ticks especially Ixodidae family. Species of veterinary importance include: *Anaplasma (A.) bovis*, *A. centrale*, *A. marginale*, *A. ovis*, *A. phagocytophilum* (zoonotic) and *A. platys*[6,7].

Anaplasmosis in livestock is characterized by some symptoms including acute fever, anorexia, weight and milk reduction and finally death[8]. *Ehrlichia* genera is also an obligate intracellular bacterium (Family Anaplasmataceae: Order Rickettsiales) that infect animals and humans[9]. Piroplasmosis caused by *Theileria* and *Babesia* species leads to major economic losses to the livestock industry especially in Asia[10]. Piroplasmosis ranges from subclinical to acute with signs including fever, anemia, severe lethargy, and circulatory shock[11,12].

Iran is endemic for many diseases including some arthropod-borne diseases. Many studies have been carried out in many provinces, while in some provinces the related investigations seem to be insufficient. One of these provinces is East Azerbaijan. The province shares common borders with the Republic of Azerbaijan and Armenia in the north. In some parts of East Azerbaijan, animal husbandry plays a major role in people’s lives. In addition, the common border with other countries allows the livestock and wildlife trafficking, which plays an undeniable role in transmitting the diseases from one country to another.

This study was performed to estimate the infection of ticks with pathogens *Anaplasma*, *Ehrlichia*, *Babesia*, *Theileria* and *Brucellaceae* using molecular methods in Ahar and Kaleybar cities of East Azerbaijan province, north of Iran.

2. Materials and methods

2.1. Study area

East-Azerbaijan is located in northeast of Iran (38.076 6° N 46.280 0° E), bordering with Armenia, Republic of Azerbaijan in north, Ardabil Province in east, West Azerbaijan Province in west, and Zanjan Province in south (Figure 1). East-Azerbaijan covers an area of 47 830 km² and Sahand Mountain lying at south is the highest area (3 707 m), whereas the lower lying areas are around Ahar at north. Climate of East-Azerbaijan is cold mountainous affected by Mediterranean continental.

Ahar is located in a mountainous area (38° 28’ N 47° 04’ E) limited to Kaleybar from the north, Harris from the south, Varzeqan from the west and Meshkinshahr from the east. The climate is cold mountainous. This city is surrounded by important mountains such as Gheez Qalehsi (1 266 m) and Hashtsar (2 536 m) which are stretched from north to south and west. The lowest point of Ahar is Qarahsu River, which is located in the eastern parts. Kaleybar is also located in a mountainous area (38° 51’N 47° 01’E) which is bordered by the Republic of Azerbaijan, Armenia and Aras River from the north, Jolfa city from the west, Ardabil province (Moghan plain) from the east and Ahar city from the south. Its main mountain range is called Qare Dagh, which has several peaks with different heights such as Gasht Sar (2 940 m), Ghazi Bolagh (2 700 m), Shibar (2 652 m), Sarparq (2 860 m) and Zinghaloo (2 900 m). Kaleybar has a mountainous climate and the whole region is covered with forests and pastures.

![Figure 1. East Azerbaijan province is located in northwest of Iran. The sampling locations are marked with asterisks.](http://www.apjtm.org)
2.2. Collection and identification of ticks

A total of 2,022 ticks were collected from different parts of East-Azerbaijan province during spring and summer, 2018 as ticks have their highest activity during these seasons. Multistage random sampling method was used and based on Cochran’s formula (95% confidence level), the sample size required for each molecular assay was determined[13]. Ticks were separated from different body parts including ear, groin, tail, back and neck. Sheep, goat and cow were sampled as animals of interest. There were no specific criteria for animal selection. However, it should be noted that all the animals were apparently healthy and were mostly under 3 years old. Forceps were used with special care not to harm the ticks and animals. Ticks were then placed in appropriately labeled tubes and transferred to the Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Iran along with cold chain. Sequences were checked to correct any sources of error using Chromas® software.

2.3. DNA extraction, molecular detection of pathogens and sequencing

DNA was extracted using Exgene DNA extraction kit (GeneAll, Korea) according to the manufacturer’s instructions. A 20 μL reaction mixture containing 10 mm Tris-HCl (Ph 9.0), 30 mm KCl, 1.5 mm MgCl2, 250 mm dNTPs, 0.5 mm each sense and antisense primers, 1 U Taq DNA polymerase and 2 μL of DNA were used for PCR. PCR thermal program was as follows: Initial denaturation at 94 °C for 5 min followed by 35 cycles of amplification (1 min denaturation at 94 °C, 1 min annealing at 57 °C and 1 min elongation at 72 °C)[15]. A 524 bp fragment of the 16S rRNA gene of *Anaplasma* and *Ehrlichia* was amplified by nested-PCR[16]. *18S* rRNA was targeted to amplify *Babesia* sp./*Theileria* sp. genome[16]. Finally, *16S* rRNA of *Brucellaceae* genome was targeted for the production of 712 bp amplicons[17]. Sets of primers and their characteristics for each PCR reaction is listed in Table 1. Genomic DNA of *Anaplasma*, *Babesia*, *Theileria* and *Brucella* species were obtained from the Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Iran and used as positive controls. Double distilled water was served as negative controls. The PCR analysis was performed on 1.5% agarose and UV condition. Among the positive samples of each species, the samples with a sharp band of the expected size were chosen for sequencing to confirm the accuracy of the PCR reaction. Sequencing of selected PCR products was performed by Takapouzist Company, Iran. Sequences were checked to correct any sources of error using Chromas® software. The nucleotide sequences were then blasted by BLASTN (http://www.ncbi.nlm.nih.gov/BLAST) program.

2.4. Statistical analysis

SPSS V19 (IBM, USA) was used for statistical analysis. Descriptive statistics were used to summarize the variables. Also

| Table 1. Details of the primers, target gene and product size of PCR assays. |
|-----------------------------|------------------|--------------------|------------------------|-----------------------|
| Species | Target gene | Nucleotide sequences | PCR product size | Reference |
| *Anaplasma* sp. or *Ehrlichia* sp. | 16S rRNA | Ehr1: 5′-AAC GAA CGC TGG CGG CAA GC-3′ | 524 bp | [16] |
| | | Ehr2: 5′-AGT AYC GRA CCA GAT AGC CGC-3′ | |
| | | Ehr3: 5′-TGC ATA GGA ATC TCA GTA G-3′ | |
| | | Ehr4: 5′-CTA GGA ATG CCA TCC TCT-3′ | |
| *Babesia* sp. or *Theileria* sp. | 18S rRNA | F1: 5′-ACC ATT TGC TAC GGA ATA ACT CAG-3′ | 443 bp, 449 bp | [16] |
| | | R1: 5′-CAG GCC GGA TGT TTA ATG GG-3′ | |
| | | F2: 5′-CCA AGG ACT CAG-3 | |
| | | R2: 5′-CAC CTC AGC GTC AGT AGT GG-3′ | |
| | | R2: 5′-CAC CTC AGC GTC AGT AGT GG-3′ | |

| Table 2. Prevalence of ticks in respect to sex, life stage and sampling season. |
|-----------------------------|------------------|--------------------|------------------------|-----------------------|
| Species | Male | Female | Total | Male | Female | Nymph | Larva | Total | No. | % (95% CI) |
| *Hyalomma anatolicum* | 5 | 5 | 10 | 302 | 481 | 0 | 0 | 783 | 793 | 39.21 (37.08-41.39) |
| *Hyalomma* sp. | 0 | 3 | 3 | 0 | 18 | 0 | 0 | 52 | 804 | 39.76 (37.62-41.93) |
| *Hyalomma marginatum* | 69 | 64 | 133 | 31 | 34 | 0 | 0 | 16 | 81 | 9.14 (7.93-10.49) |
| *Rhipicephalus bursa* | 12 | 14 | 26 | 26 | 53 | 0 | 0 | 79 | 105 | 5.19 (4.27-6.25) |
| *Rhipicephalus sanguineus* | 23 | 34 | 57 | 4 | 12 | 0 | 0 | 16 | 73 | 3.61 (2.84-4.52) |
| *Dermacentor marginatus* | 15 | 6 | 18 | 8 | 6 | 0 | 0 | 14 | 32 | 1.58 (1.09-2.23) |
| *Hyalomma asiaticum* | 5 | 13 | 18 | 6 | 1 | 0 | 0 | 7 | 14 | 0.69 (0.38-1.16) |
| *Haemaphysalis sulcata* | 0 | 7 | 7 | 0 | 5 | 0 | 0 | 5 | 12 | 0.59 (0.31-1.03) |
| *Haemaphysalis puncticula* | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 3 | 3 | 0.14 (0.03-0.43) |
| *Haemaphysalis concinna* | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0.04 (0.00-0.28) |

Total (%) 121 (5.98) 144 (7.12) 265 (13.10) 377 (18.64) 597 (29.52) 782 (38.67) 1 (0.04) 1 757 (86.89) 2,022 100 |
95% confidence interval for prevalence of tick infestation was calculated using binomial distribution (significant level less than 0.05).

3. Results

3.1. Identification and characteristics of ticks

Out of a total of 1,400 livestock (sheep, goat, buffalo and cattle), 2,022 hard ticks were collected. Four genera and 9 species were morphologically identified including:

- Hyalomma (Hy.) anatolicum: 39.21% (95% CI 37.08%-41.39%),
- Hy. asiaticum: 9.14% (95% CI 7.93%-10.49%),
- Hy. marginatum: 38.67% (95% CI 36.55%-40.84%),
- Hyalomma sp.: 1.03% (95% CI 0.76%-1.76%),
- Rhipicephalus (Rh.) bursa: 5.19% (95% CI 4.27%-6.25%),
- Rh. sanguineus: 3.61% (95% CI 2.84%-4.52%),
- Haemaphysalis sulcata (Hae.): 0.59% (95% CI 0.31%-1.03%)

Table 3 summarizes the data related to tick species which were examined for detection of Anaplasma, Ehrlichia, Babesia, Theileria and Brucellaceae using nested PCR assay for detection of a 524 bp fragment of Anaplasma, Ehrlichia spp. 16S rRNA indicated that Hy. asiaticum, Hae. sulcata, Hy. anatolicum, Rh. bursa, D. marginatus, Hy. marginatum and Rh. sanguineus were positive. Amplification

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of positive ticks/No. of examined ticks for PCR</th>
<th>Prevalence % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An or Eh</td>
<td>Br</td>
</tr>
<tr>
<td>Hyalomma asiaticum</td>
<td>5/11</td>
<td>3/11</td>
</tr>
<tr>
<td>Haemaphysalis sulcata</td>
<td>2/5</td>
<td>2/5</td>
</tr>
<tr>
<td>Hyalomma anatolicum</td>
<td>16/53</td>
<td>0/25</td>
</tr>
<tr>
<td>Rhipicephalus bursa</td>
<td>5/24</td>
<td>4/24</td>
</tr>
<tr>
<td>Dermacentor marginatus</td>
<td>2/15</td>
<td>6/15</td>
</tr>
<tr>
<td>Hyalomma marginatum</td>
<td>4/32</td>
<td>5/25</td>
</tr>
<tr>
<td>Rhipicephalus sanguineus</td>
<td>3/25</td>
<td>0/25</td>
</tr>
<tr>
<td>Haemaphysalis concinna</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>Haemaphysalis punctata</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>Total</td>
<td>37/168</td>
<td>20/133</td>
</tr>
</tbody>
</table>

95% CI for prevalence of tick infestations was calculated using binomial distribution (significant level less than 0.05).

3.2. Molecular detection

Table 3 summarises the data related to tick species which were examined for detection of Anaplasma, Ehrlichia, Babesia, Theileria and Brucellaceae using nested PCR assay for detection of a 524 bp fragment of Anaplasma, Ehrlichia spp. 16S rRNA indicated that Hy. asiaticum, Hae. sulcata, Hy. anatolicum, Rh. bursa, D. marginatus, Hy. marginatum and Rh. sanguineus were positive. Amplification

Figure 2. Evolutionary tree of Anaplasma and Ehrlichia sequences. Data was obtained from this study and similar sequences from other investigations, deposited in GenBank; Wolbachia pipientis included as outgroup. The scale bar indicates an evolutionary distance of 0.01 nucleotides per position in the sequence. Sequences derived from the present study are marked with asterisks. The percentage of trees in which the associated taxa clustered together is shown next to the branches.
of a 712 bp fragment of 16S rRNA from Brucellaceae genome also revealed that *Hy. asiaticum*, *Hae. salacata*, *Rh. bursa*, *D. marginatus* and *Hy. marginatum* were positive. On the other hand, no genomic material from *Babesia* spp./*Theileria* spp. was detected in tested samples (Table 3).

3.3. Sequencing and phylogenetic analysis

A total of 6 sequences with a sharp band of the expected size were submitted and the accession numbers MH538092 (*Anaplasma* sp.), MH538094 (*Ehrlichia* sp.), MH538095 (*Anaplasma* sp.), MH538096 (*Anaplasma* sp.), MH538097 (*Anaplasma* sp.), MH538098 (*Anaplasma* sp.) and MH538966 (*Brucellaceae*) were assigned in GenBank. Submitted sequences were aligned using Clustal-W algorithm. The evolutionary tree of *Anaplasma* and *Ehrlichia* sequences obtained from the present study (MH538092, MH538094, MH538095, MH538096, MH538097, and MH538098) and similar sequences from other investigations, deposited in GenBank was inferred by using the maximum likelihood method with bootstrap of 1 000 replications[18,19](Figure 2). Furthermore, the evolutionary tree of Brucellaceae sequence obtained from this study (MH538966) and similar sequences from other investigations, deposited in GenBank was inferred using the maximum likelihood method with bootstrap of 1 000 replications[18,19](Figure 3).

Initial trees for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood approach, and then selecting the topology with superior log likelihood value. Trees were drawn to scale, with branch lengths measured in the number of substitutions per site[19]. The results of phylogenetic analysis revealed that three identified *Anaplasma* sp. had the most similarity with *A. centrale* (Accession Number: AF283007.1). Two other detected *Anaplasma* sp. had the most similarity with *A. platys*, *A. camelii* and *A. phagocytophilum* (Accession Numbers MG050139.1, KX765882.1, and KF002508.1 respectively). Further to detected *Ehrlichia* sp., it has the most similarity with *Ehrlichia ruminantium* (Accession number: NR074513.2) (Figure 2). Furthermore, the detected Brucellaceae bacterium had the most similarity with *Mycoplasma peli* (Accession number: LC177126.1).

4. Discussion

Ticks are considered as important vectors of pathogens which play a critical role in the survival and transmission of the pathogens that cause diseases in humans and animals[20]. In the present study, *Hy. anatolicum* was determined as the dominant specie and *Hyalomma* as
the dominant genera. Conducted studies in north in Hamadan, West-Azerbaijan and Ardabil provinces showed that *Hyalomma* genera was reported as the predominant genus of collected ticks[21-24]. It should be also noted that in many northern provinces, *Rhipicephalus* spp. were determined as the dominant species[25-27] and in some studies, both of the genera were considered to be dominant[28]. In the current investigation, four genera were detected at the Azerbaijan-Armenia borderline in Iran, including *Hyalomma*, *Rhipicephalus*, *Dermacentor* and *Haemaphysalis*. All of these genera have been reported to be incriminated for transmission of Crimean Congo hemorrhagic fever virus in different countries including Iran[29]. The detected tick genera in the present study have also been considered important from the medical and veterinary perspective[30]. The most infected hosts in terms of tick infestation were cattle and most of ticks were collected in the summer which indicate higher activity of ticks in hot temperature. Furthermore, 37 out of the 168 (22%) tested ticks were positive for the *Anaplasma*, *Ehrlichia* spp. including *Hy. asiaticum*, *Hae. salcata*, *Hy. anatolicum*, *Rh. bursa*, *D. marginatus*, *Hy. marginatum* and *Rh. sanguineus*. Tajedin et al. reported tick infection with *Anaplasma* or *Ehrlichia* spp. across East-Azerbaijan (71%) which is higher than our result[31]. This difference can be justified due to larger sample size and host variability in the present study. Jafar-Bekloo et al., indicated the rate of tick infection with *Anaplasma* and *Ehrlichia* spp. using molecular assays in north of Iran: 25% of ticks were infected including: *R. sanguineus*, *R. bursa*, *Hy. marginatum* and *Hy. scapense*, which is in concordance with our study except that *Hy. scapense* was not detected in the present study[6]. In a molecular study on *Anaplasma* and *Ehrlichia* spp. identification in *Hyalomma* ticks in border line of Iran-Pakistan, it was indicated that *Hy. anatolicum* was the most prevalent specie (in line with the present study) and *Anaplasma* or *Ehrlichia* spp. were detected in 68.3% of the specimens[32]. The higher prevalence might be due to the hot and dry climate of the Iran-Pakistan border, the greater rate of traditional animal husbandry in the region and the lack of awareness of animal health principles. A 16S rRNA gene fragment of *Anaplasma* species was identified in 26.4%, 49.5%, 58.3% and 59% of tested ticks at Afghanistan borderline, Mazandaran, Kerman and Savadkhooh regions of Iran, respectively[9,15,33,34]. Further to the previous studies, it can be concluded that in most parts of Iran, *Rhipicephalus* spp. are the most infected ticks to *Anaplasma* spp. and *Ehrlichia* spp.

The role of Argasidae and Ixodidae ticks in preservation and transmission of Brucellaceae in nature and from one animal to another have already been speculated. Previously, the presence of *B. abortus* in lice of several ruminants was reported[35-37]. To the best of our knowledge, few molecular studies have been performed on the infection of ticks with Brucellaceae family in Iran and other parts of the world. A *Brucella*-like bacterium was detected in a *Boophilus* tick using PCR method. Ticks were collected from Talesh County, Guilan Province, north of Iran[17]. Molecular detection of tick-borne pathogens harbored by ticks collected from livestock in the Xinjiang Uygur Autonomous Region, China revealed that 26.2% of tested ticks were infected with *Brucella* sp.[38]. *B. melitensis* and *B. abortus* were also detected in eggs, larvae and engorged females of *D. marginatus* collected from sheep and goats from different parts of China[39]. In the present study, the Brucellaceae genome fragment was detected in *Hy. asiaticum*, *Hae. salcata*, *Rh. bursa*, *D. marginatus* and *Hy. marginatum*. The members of the genera *Hyalomma*, *Dermacentor*, *Rhipicephalus* and *Haemaphysalis* seem to act as vectors of *Brucella* spp. in nature. However, further studies seem necessary to confirm the result.

No *Babesia* sp./*Theileria* sp. genome was found in the collected ticks which may suggest that ticks don’t have a significant role in the circulation of these pathogens in the study area. Other studies from other parts of Iran, however, have shown various results in terms of tick infection with *Babesia* sp./*Theileria* sp. Molecular surveillance of *Theileria* (*T.*) *ovis*, *T. lestoquardi* and *T. annulata* infection in sheep and ixodid ticks in Razavi-Khorasan province, north east of Iran revealed that 9% of *R. turanicus* were positive for *Theileria* species[40]. Hasheminasab and colleagues reported that *Rhipicephalus* spp. and *Hy. anatolicum* had the highest infection rate with *Babesia* and *Theileria* in Dehgolan, Iran[41]. Molecular detection of *Theileria* sp. in tick vectors in Fasa and Kazeroun areas of Iran also revealed that one pool of *H. turanicus* was infected with *T. ovis*[42]. Habibi et al. showed 18 isolated tick DNAs (66.7%) from dogs in Shahriar County, Iran were infected with *T. annulata*[43]. Tick infection with *Theileria* and *Babesia* in Iran ranges between 6.1% to 55% and 6.25% to 76%, respectively[64,44-48]. It seems that differences between the results of the present study and similar studies in other regions of Iran is due to differences in the sampling season, sample size, climate conditions, molecular methods, livestock management and husbandry. It is recommended that anaplasmiosis, ehrlichiosis as well as brucellosis should be considered important health issues in north-west of Iran and consistent monitoring on tick vectors and livestock should be performed regularly. It is also suggested to conduct the study in autumn and winter seasons on vertebrate hosts (especially domestic animals) and the people who are at risk (veterinarians and ranchers) to clarify the status of diseases more accurately. Boundaries must be carefully monitored and the transportation of animals, even wild animals, must be closely observed.

In the present study, we detected the infection of tick with *Anaplasma* sp./*Ehrlichia* sp. and Brucellaceae. It can also be concluded that in the north and north-west of the country, *Hyalomma* and *Rhipicephalus* species are the most prevalent and important species among hard ticks.
Conflict of interest statement

The authors declare no conflict of interest.

Authors’ contributions

Both R.A. and H.B. contributed to performing the experiments and contributed to the final version of the manuscript. S.K., F.F., A.H.C and M.A.O. analyzed the data and edited the manuscript. Both Z.T. and M.M.S. supervised the project and contributed to the final version of the manuscript. All authors reviewed the manuscript.

References

[26] Razmi GR, Najamejad V, Rashitibaf M. Determination the frequency of Ixodid ticks on the sheep in Khorasan Razavi province, Iran. *Archiv Razi*